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The stability of viscous flow between rotating concentric 
cylinders with a pressure gradient acting 

round the cylinders 
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Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 

(Received 6 February 1959) 

The stability of a viscous fluid between concentric cylinders is analysed, for the 
case in which the basic velocity distribution is the sum of a velocity distribution 
due to the rotation of the cylinders (Taylor 1923), and a ‘pumping’ velocity 
distribution due to a pressure gradient acting round the cylinders (Dean 1928). 
The critical Taylor number is computed for a wide range of values of the ratio 
of average velocity of pumping to average velocity of rotation for the case in 
which the outer cylinder is stationary. It is assumed that the spacing between 
the cylinders is small. 

1. Introduction 
The stability of a viscous flow between two concentric rotating cylinders was first 
considered experimentally and theoretically by Taylor (1923). Using the assump- 
tion that thespacingbetweenthecylindersissmallcomparedto themeanradius, he 
obtained a criterion for the onset of a secondary motion with a cellular form which 
was verified by his experiments. The eigenvalue problem which arises in this 
analysis is of considerable interest, and has been discussed by several authors, 
including Pellew & Southwell (1940), Chandrasekhar (1954a) and DiPrima (1955). 

A similar typeof instabilityoccurs when a viscous fluid flowsin acurvedchannel 
under a pressure gradient acting round the channel. This problem was first 
considered by Dean (1928), for the case in which the annulus is thin compared 
to the mean radius. The resulting eigenvalue problem has also been studied by 
Reid (1958) and Hammerlin (1958). Their results verify those of Dean (1938). 

In  a number of engineering applications, stability problems of the type just 
described are of considerable interest. One such problem, which has been con- 
sidered recently by Brewster & Nissan (1958) and Brewster, Grosberg & Nissm 
(1959), is that of the stability of a viscous fluid between concentric cylinders when 
the inner cylinder is rotating (the Taylor problem) and a t  the same time the fluid 
is being pumped round the annulus (the Dean problem). The pumping may be 
in the direction of the rotation or opposed to it. The theoretical conclusions of 
Brewster et al. (1959) are based on the use of the necessary condition for in- 
stability that the square of the circulation should decrease outwards from the 
inner cylinder. The eigenvalue problem is explicitly solved only in the case when 
the average velocity of rotation is equal to, but opposite in direction to, the 
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average velocity of pumping. In  general their conclusions are supported by 
their experimental results. 

In  this paper the stability problem for the above type of velocity distribution 
is formulated. In  the case when the spacing between the cylinders is small com- 
pared to the mean radius, the eigenvalue problem is solved by the methods first 
suggested by Chandrasekhar (1954a) .  Numerical results for the critical value of 
the parameter governing stability are given for a wide range of ratios of average 
velocity of pumping to average velocity of rotation. The results are in good 
agreement with the experimental data of Brewster et al. (1959) .  

2. The disturbance equations 
Let ( r ,e , z )  be cylindrical co-ordinates, with the z axis coinciding with the 

axis of the cylinders, and let R,, R,, Ql and Q, denote the radii and angular 
velocities of the inner and outer cylinders, respectively. If u,, Ue, and us denote 
the components of velocity in the increasing r ,  8 and z direction and p denotes 
the pressure, the Navier-Stokes equations admit a steady solution of the form 

Now superimpose on this steady motion a small disturbance of a form such 
that the 0-component of velocity is 

The motion will be stable if the real part of cr is less than zero, and unstable if 
it is greater than zero. It can be anticipated, from similar problems and the 
experimental results, that for the problem studied here the secondary motion 
will be of a stationary cellular nature. Hence, we shall only consider the marginal 
state cr = 0. In  this case the linearized equations for the disturbance velocities are 

ue(r, 0, z ,  t )  = V ( r )  + v(r) cos hz euf. ( 2 )  

1 sh2 1 
v r  

( L - h 2 ) 2 ~  = - - V(r)w,  

(3) 

where u is the disturbance velocity in the r direction, v is the kinematic viscosity, 

L=-+---- 
dr2 r dr r2’ 

and d2 I d  1 

In  the case that d = R, - R, is small compared with i(Rl + R2), the operator 
L can be replaced by d2/dr2, and V / r  and d V/dr  + V / r  can be approximated by 

dV -+- v = 2A +d 2 ( 2 z -  I ) ,  
dr r ~ P R ,  ae 

where k = Q2/Q1, r = R,+dx, A = Ql{l- ( k R ~ / R : ) ~ / { l - ( ~ ~ / ~ ~ ) } ,  and ,LL is the 
viscosity. These approximations are correct up to terms O(d/R,). The first term 
on the right of equation ( 4 )  represents the velocity profile due to the rotation of 
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the cylinders, and the second term represents the velocity profile due to pumping. 
Using equations (4 )  and ( 5 ) ,  the system of differential equations (3) becomes 

( 0 2  - a2)2 u = ( 1  - ( 1  - k) x- Q(x2 - x)> w, (6) 

(D2-a2)v = -a2T (7) 

where u has been redefined as (v/2a2R1d2)u and 

The quantities V' and V, are the average velocities due to rotation andpumping, 
respectively. The parameter, T ,  is commonly referred to as the Taylor number. 

The requirement of no slip at the boundaries gives the boundary conditions 

u = w = DU = 0 ( 9 )  
a t x = O a n d x =  1. 

The system of equations (6 )  and (7),  together with the boundary conditions, 
determine an eigenvalue problem for T as a function of k, RJR,, Q and a. For 
fixed values of k, R21R,, and Q ,  the minimum value of T with respect to a deter- 
mines the critical value, T,, at which instability will first set in. Notice that when 
the pumping is zero, i.e. Q = 0, equations ( 6 )  and (7) reduce to the Taylor prob- 
lem as treated by Chandrasekhar (19543). In  order to obtain the problem of 
a viscous flow in a curved channel under a pressure gradient acting round the 
channel, i.e. Q +- 00, it is necessary to redefine u as u/Q, and then let Q -+ co, 
noting that the combination TQ2 is 72(V'&/~)~/(d/R,). 

The determination of T, for the general case is a four parameter problem, and 
would require a considerable number of computations. We shall now restrict 
ourselves to the physically interesting case (see Brewster & Nissan (1958) or 
Brewster et al. (1959))  when the outer cylinder is a t  rest. 

3. The outer cylinder at rest 
In  this case k = 0 and equations ( 6 )  and (7 )  reduce to 

(D2 - u ' ) ~ u  = (1  -2- Q(x2 -.)I V, 
(D2-az)w = -Ta2{1+Q(3x- 1))u. 

Thus T is now defined as a function of a and Q = 3V,/VB; and for fixed values of Q 
the minimum value of T with respect to a gives the critical Taylor number, T,, 
at which instability will occur. 

The method that was used in obtaining approximate values of T, and a, is 
completely analogous to that used by Chandrasekhar ( 1 9 5 4 ~ )  in treating similar 
problems. The function w(x) is expanded in a set of complete functions satisfying 
w(0) = v(1) = 0. In this case 

m 

m = l  
v(x) = C A,sinmnz, (12 )  

and with this expansion for w(x), equation (10) is solved for u(x) .  
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The four constants of integration that appear in the solution are determined 
by the conditions u = Du = 0 at x = 0 and 1.  The functions u and v are then 
substituted in equation (1 l ) ,  the result is multiplied by sin nnx, n = 1,2,  . . . and 
integrated from 0 to 1. This leads to infinitely many equations for the A,. If all 
of the A ,  are not to vanish identically the determinant of the coefficients must be 
zero, and this gives a relation between T ,  a and Q .  The details of the analysis, 
while straightforward, are quite lengthy and are given in the Appendix. 

Q a = Ad Tln6 N TN-JTN 
30 3-76 0.085 3 0.982 
21 3.70 0.155 - 0.984 
15 3-60 0.266 0.987 
10 3-45 0.474 - 0.992 
6 3-30 0.866 - 0-996 
3 3-14 1-54 - 1.006 

1 so06 1 -0 3-13 2.53 - 
0-50 3-13 2.96 - 1.005 
0 3-12 3-53 - 1.004 

- 0.50 3.17 4-35 - 1.002 
- 1.0 3-24 5-64 - 0.9997 
- 1.5 3-40 7.97 - 0-9992 
- 2.0 3.80 13.1 1.02 
- 2.5 5.0 24-7 4 1.002 
- 2.75 5.73 33.1 - 1.016 
- 3.00 6-35 42.6 - 1.045 
- 3.25 7.05 53.7 - 1.094 
- 3.50 7.4 66.4 - 1.109 
- 3.75 5-8 64-5 _- 0.949 
- 4.00 5.5 47.8 - 0.969 
- 4.50 5.37 29.1 - 0.981 
- 5.00 5.20 19.0 - 0.987 
- 6.00 5.00 10.0 - 0.995 
- 8.00 4.70 4.00 3 1-02 
- 10.00 4.55 2.10 1-01 
- 15.00 4.35 0.720 - 0-984 

TABLE 1. Critical Taylor Numbers and corresponding values of a for assigned values of &. 
( N  = number of terms used in approximati.:n) 

- 

- 

- 

The numerical results for T, and a, for a range of values of Q from - 15 to 30, 
i.e. V,/V, ranges from - 5 to 10, are tabulated in table 1, and shown graphically 
in figures 1 and 3. It is clear from table 1 that for most values of Q a three-term 
approximation gives satisfactory results; however, for the range - 8 < Q < - 2 
it was necessary to use another term in the approximation. 

For Q = 0 the values of T, and a, are in agreement with those of Chandrasekhar 
(19543). When the average velocities of pumping and rotation are equal but in 
opposite directions, i.e. Q = - 3, the values of Tc/n6 = 42.6, and a, = 6.35 may 
be compared with the values 40.7 and 5-7" found by Brewster et al. (1959) using 
a six-term approximation and following the methods of Dean (1928). It is 
impossible to compare the present results with the results for zero rotation; 

* In part, the poor agreement for a, probably follows from the fact that, in the neighbour- 
hood of the minimum value, T is very insensitive to changes in a and hence an accurate 
determination of a, is quite difficult. 

30 Fluid Mech. 6 
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however, as Q -+ +_ 00 it appears from figure 2 that a, is approaching a value of 
about 4, and Reid (1958) gives a, = 3.96 for this case. 

The experimental results* given by Brewster et al. (1959) have been used to 
compute values of T,/r6 which are shown in figure 1. As can be seen the experi- 
mental points are in good agreement with the theoretical curve obtained here. 

’iq- - 

Q 
FIUURE 1. The variation of the critical Taylor number, T,, aa a function of Q = 3 v p / V ~ .  
Values of T, computed from the experimental data of Brewster et al. (1959) are also 
shown. 0, experimental points, Brewster et al. (1959). 

1 
-15 -12-10-8 -6 -4 -2 0 2 4 6 8 10 12 15 

Q 
FIGURE 2. The variation of the critical wave-number a ,  

as a function of Q = 3 V p / t ’ ~ .  

* The experiments were run with a glycerine solution as the fluid. The value of R, was 
15.6 cm and the value of d was 0.858 em, which was determined by making the experimental 
results agree with the theoretical results of Taylor for Q = 0. Some experiments were also 
run with a water-dye solution for the range of value of - 5 < Q < - 3, but there was diffi- 
culty in making accurate observationa in this case and the scatter of the results was quite 
large. However, in a private communication, Dr Grosberg of the University of Lee& has 
informed the author that the average values of the latter results do show good agreement 
with the theoretical curve given in figure 1. 
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Finally, for an assigned ratio of V,/V,, the curve shown in figure 1 may be used 
to compute the critical value of V, at which instability will occur. Also, for given 
values of V, or V, the corresponding ranges of V, and V, for which the flow is 
stable may be computed. It should be noted that in the neighbourhood of 
&/vR = - 1 the value of T, is quite large. This means that as long as the average 
velocities of pumping and rotation are nearly equal and opposite in sign, and 
hence tend to annul each other on the average, they may be quite large in magni- 
tude before instability will occur. 

The results presented in this paper were obtained in the course of research 
sponsored by the Mechanics Branch of the Office of Naval Research, Washington. 
The author would like to express his appreciation to Prof. A. H. Nissan for 
suggesting this problem and for his continued interest throughout the course of 
the analysis. Thanks are also due to Mr Burt Liebowitz who carried out the 
rather lengthy numerical computations. 

Appendix 
The solution of equation (lo), corresponding to the expansion of v(x) given in 

equation (13), that satisfies the boundary conditions u = Du = 0 at x = 0 and 1 is 

A m  m 

u(x) = C - ___ (Aim) cosh ax + BIm) sinh ax + Ahm)x cosh ax + Bkrn)x sinh ax 
l j l=l (m2n2 + a2)2 

+ [I + f m  - (1 - &) x - Qxz] sin mnx - em[( 1 - &) + 2Qx] cos mnx}, 

4(a2 - 5m2n2) 4mn 
fm = (m2n2+a2)2 7 em = -____ m2n2 + a2 ' 

where 

Aim) = (1 -&)em,  

mn BIrn) = a (aa, + (sinh a + a cosh a) p,,, - (sinh a) ym], 

?nn 
Aim) = - -{(sinh a)2 a, + (asinh a + a cosha) p, - (a sinh a) ym), 

A 

mn 
A 

Rim' = - {(sinh a cosh a - a) a, + (a2sinh a) 1, - (a Gosh a - sinh a) ym) ; 

and urn= l+&Fm, Pm = -G,(-l)m+l{(l+&)+(l-&)cosha}, 

yIn = (-l)"+l&Fm-(l-&)(asinha)G,, A=sinh2a-a2, 

where 

Substituting for u and v in equation (11) multiplying the result by sinnnx, 
n = 1,3, . . . , and integrating from 0 to 1 gives the following system of equations: 

30-2 
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where Am = Am/(m2++ a2)2, a,, = 0 if n + m and = 1 if n = m, and the lengthy 
expression Knm(u, Q )  is given by 

nn- 
n2n2 + a2 K,, = (g, Aim) + h, Bim) + Ic, Aim) + 1, BLrn)} 

2a 
n2n2 + u2 ' Cn = E , -  1 - E,A,, En = 

1 
H, = 1--En+2E$, 

a 

n + m  even, n + m, 

n = m, 

n + m odd; 

n + m  even, n + m ,  

P n  = L - E n B f i ,  
and 

0, 

x n m  = { $9 

- 4An, + 2Bnmem, 

( -  12Anm+4Bnmern, 

n + m odd; 

n + m  even, n 2 m, 

n = m, 

4An,,-- 
(n  - m)4 (n  + m)4 

z n m  = I iz [ 1 

+ 8 ~ n m f r n ,  n + m  odd; 

where 
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